Distributed AdaBoost Extensions for Cost-sensitive Classification Problems
نویسندگان
چکیده
منابع مشابه
Revisiting AdaBoost for Cost-Sensitive Classification. Part I: Theoretical Perspective
Boosting algorithms have been widely used to tackle a plethora of problems. In the last few years, a lot of approaches have been proposed to provide standard AdaBoost with cost-sensitive capabilities, each with a different focus. However, for the researcher, these algorithms shape a tangled set with diffuse differences and properties, lacking a unifying analysis to jointly compare, classify, ev...
متن کاملRevisiting AdaBoost for Cost-Sensitive Classification. Part II: Empirical Analysis
A lot of approaches, each following a different strategy, have been proposed in the literature to provide AdaBoost with cost-sensitive properties. In the first part of this series of two papers, we have presented these algorithms in a homogeneous notational framework, proposed a clustering scheme for them and performed a thorough theoretical analysis of those approaches with a fully theoretical...
متن کاملADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION
With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...
متن کاملImproving Classification with Cost-sensitive Approach for Distributed Databases
A problem arises in data mining, when classifying unbalanced datasets using Support Vector Machines. Because of the uneven distribution and the soft margin of the classifier, the algorithm tries to improve the general accuracy of classifying a dataset, and in this process it might misclassify a lot of weakly represented classes, confusing their class instances as overshoot values that appear in...
متن کاملA Cost Sensitive Technique for Ordinal Classification Problems
A class of problems between classification and regression, learning to predict ordinal classes, has not received much attention so far, even though there are many problems in the real world that fall into that category. Given ordered classes, one is not only interested in maximizing the classification accuracy, but also in minimizing the distances between the actual and the predicted classes. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2019
ISSN: 0975-8887
DOI: 10.5120/ijca2019919531